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Mycobacterium bovis BCG, the current vaccine against tuberculosis, is ingested by macrophages promoting the development of
effector functions including cell death andmicrobicidalmechanisms. Despite accumulating reports onM. tuberculosis, mechanisms
of BCG/macrophage interaction remain relatively undefined. In vivo, few bacilli are sufficient to establish a mycobacterial
infection; however, in vitro studies systematically use high mycobacterium doses. In this study, we analyze macrophage/BCG
interactions and microenvironment upon infection with low BCG doses and propose an in vitro model to study cell activation
without affecting viability. We show that RAW macrophages infected with BCG at MOI 1 activated higher and sustained levels of
proinflammatory cytokines and transcription factors while MOI 0.1 was more efficient for early stimulation of IL-1𝛽, MCP-1, and
KC. Both BCG infection doses induced iNOS and NO in a dose-dependent manner and maintained nuclear and mitochondrial
structures. Microenvironment generated by MOI 1 induced macrophage proliferation but not MOI 0.1 infection. In conclusion,
BCG infection at low dose is an efficient in vitromodel to studymacrophage/BCG interactions that maintains macrophage viability
and mitochondrial structures. This represents a novel model that can be applied to BCG research fields including mycobacterial
infections, cancer immunotherapy, and prevention of autoimmunity and allergies.

1. Introduction

Mycobacterium tuberculosis (M. tuberculosis), the causative
agent of tuberculosis (TB) infection, is a major global health
problem including transmission of drug-resistant strains
(MDR-TB) and the increased risk of TB among HIV-infected
persons [1]. The World Health Organization estimated that
in 2013 there were 9 million cases of TB and 1.5 million died
from the disease. TB cases coinfected with HIV were around
1.1 million with an estimated 480,000 new cases of MDR-
TB. This report indicates the need to intensify the efforts in
TB control and to give access to high-quality care for all TB
patients [2].

Mycobacterium bovis Bacillus Calmette-Guérin (BCG),
the current vaccine used against TB, is a live attenuated

mycobacteriumwhichwas isolated in 1908 and administrated
for the first time to newborn infants in 1921 [3]. BCG genome
contains a deletion in the region of differentiation 1 (RD1) and
its cytolytic activity is decreased compared toM. tuberculosis
[4, 5]. The BCG strains used in clinics were derived from
the original BCG, for example, BCG Pasteur, Danish, Japan,
Moreau, Tice, and Connaught; each vaccine has its own
immunogenic ability in both animals and humans [6, 7].
BCG vaccine provides effective protection against childhood
TB but the level of protection against adult pulmonary TB
can be variable [8]. To date, there are significant advances
in development of new vaccines against TB; however so
far, BCG remains the only licensed vaccine to prevent
TB and over 2 billion people have been immunized with
BCG.
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Currently, BCG clinical application is not limited to
the field of mycobacterial infections. Adjuvant instillation
of BCG as standard immunotherapy used in non-muscle-
invasive bladder cancer (NMIBC) results in a significant
reduction in tumor and progression. It has been described
that high doses of BCG Connaught induce a high Th1
response, prime CD8+ T cells, and efficiently prevent recur-
rences of NMIBC [9]. However, the optimal dose and dura-
tion of treatment in NMIBC are controversial and derived
side effects may lead to premature interruption of treatment.
New treatment schedules of BCGwith no negative impact on
patients are considered [10].

Macrophages are part ofmononuclear phagocytic system,
and the alveolar macrophage is the first cell to encounter
M. tuberculosis after infection; however the bacillus has the
ability to evade microbicidal activities. For example, M.
tuberculosis inhibits phagolysosomal fusion; consequently,
macrophage provides a niche for mycobacteria and although
it is a hostile environment, it is sufficient for bacillus growth
[11, 12].

Using human monocytes and macrophages and macro-
phage cell lines, it has been shown that avirulent strains of
mycobacteria induce higher levels of apoptosis than viru-
lent strains which represent a mechanism of host defense
which can be subverted by virulent M. tuberculosis to
escape from innate immunity [13–15]. However, data have
also reported that virulent and avirulent M. tuberculosis
strains can both inhibit and promote apoptosis according
to experimental conditions [16–19]. Despite accumulating
data on macrophage activation and death by M. tuberculosis
strains, BCG-mediated cellular activities in phagocytic cells
remain relatively unexplored. Studies comparing BCG with
M. tuberculosis have frequently used high Multiplicity-of-
Infection (MOI). In general, studies use BCG infection at
MOI 10 (10 bacilli/cell) pointing apoptosis as a cellular
strategy to eliminate mycobacteria [20, 21].

BCG-induced activation ofmacrophages has been associ-
ated with TNF production which is a critical cytokine in host
defense mechanisms against mycobacterial infection [22].
Both BCG-infected and uninfected macrophages produce
TNF although in lower amount than macrophages infected
with virulent strains in which TNF supports mycobacterial
growth [23]. BCG-induced TNF activates iNOS but TNF can
control intracellular BCG growth by iNOS-dependent and
iNOS-independent pathways [24]. Collectively, these models
have provided important insights into immune response
against mycobacteria but considering that a low dose of
bacteria (1 bacillus) is sufficient to establish a mycobacterial
infection in the host, it is of interest to analyze macrophage
responses in terms of cell death, activation, and integrity to
low number of mycobacteria [25].

In the present work, we compare RAW macrophage
responses upon infection with BCG Pasteur at MOI 1 and
MOI 0.1; the last is considered as a very low dose of infection.
This study aims (1) to evaluate if low doses of BCG Pasteur
are sufficient to activatemacrophages whilemaintaining their
viability and mitochondrial integrity and (2) to determine
if under low MOIs the macrophage is able to retain their
functional activities over time after infection. Our results

show that low BCG doses are an efficient in vitro infec-
tiousmodel to study interactions betweenmacrophages/BCG
maintaining viablemacrophages andmitochondrial integrity.

2. Material and Methods

2.1. Cell Culture. The murine macrophage cell line RAW
264.7 (RAW macrophages) was purchased from Ameri-
can Type Culture Collection (Rockville, MD). The cells
were maintained in DMEM supplemented with 10% head-
inactivated FBS, penicillin, streptomycin, sodium pyruvate,
glutamine, and HEPES (complete DMEM) at 37∘C in a
humidified atmosphere containing 5% CO

2
.

2.2. M. bovis BCG. M. bovis BCG Pasteur strain 1172 P2
(Pasteur Institute, Paris, France) was used and grown to the
log phase in 7H9 middlebrook medium supplemented with
oleic albumin dextrose catalase (OADC). The bacteria were
then harvested, washed, and frozen at −80∘C in PBS plus 10%
of glycerol. Bacterial load was determined by plating serial
10-fold dilutions on 7H10 middlebrook agar (supplemented
with OADC) and counting colonies after incubation for
at least 3 weeks [26]. A BCG-GFP M. bovis BCG Pasteur
strain harboring phsp60-gfp expressing Green Fluorescence
Protein (BCG-GFP)was grown in the presence of Kanamycin
as previously reported [27].

2.3. BCG Infection. RAW macrophages were cultured in
24-well flat-bottomed cell culture plates (1 × 106/mL) and
infected with BCG Pasteur at MOI 1 or MOI 0.1 along 2,
5, 18, 24, 30, 48, and 72 hours (h) at 37∘C in a humidified
atmosphere containing 5% CO

2
.

2.4. Evaluation of Cell Death by Flow Cytometry. Ending
the culture, cells were harvested by adding cold PBS to
culture plates and maintaining for 10 minutes on ice to
detach cells from plastic plates. Cells were washed in PBA
(phosphate buffered saline containing 0.1% Sodium Azide
and 0.1% Albumin Bovine) and incubated with 3 𝜇L 7-AAD
(eBioscience) solution for 20min at 4∘C in the dark, washed
in PBA, suspended in binding buffer 1x (BD pharmingen),
and incubated with 5 𝜇L Annexin-V FITC-conjugated or
APC-conjugated (when using BCG-GFP infection) (eBio-
science) for 15min at room temperature in the dark. Data
were collected using a FACs CyAn (Beckton Dickinson, Inc.)
within one hour and then analyzed with FlowJo software
(Tree Star, Inc.). 50,000 events were acquired per sample.

2.5. Flow Cytometry. The percentage of RAW macrophages
expressing transmembrane TNF (tmTNF) and intracellular
TNF (iTNF)was assessed by flow cytometry. Briefly, for iTNF,
ending the culture, cells were harvested, washed in PBA,
and fixed in 4% formaldehyde for 10min at 4∘C. Cells were
incubated with saponin-containing buffer, shaken gently for
10min at 4∘C, and then incubated with anti-TNF (MP6-
XT22) conjugated PE Cy7 (eBioscience) for 30min at room
temperature in the dark and washed with PBS-saponin. For
tmTNF label, cells were harvested, washed in PBA, and fixed
in 4% formaldehyde; RAW macrophages were suspended in
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PBA and stained with anti-TNF 30min at 4∘C and washed
with PBA. Fluorochrome-labeled isotype-matched control
antibody was used to evaluate background staining. After
incubation with antibodies, cells were washed twice in PBA
and data collected using a FACs CyAn and analyzed with
FlowJo software. 100,000 events were acquired per sample.

2.6. Cytokine and Chemokine Measurements. At different
time points after BCG infection, cell-free supernatants were
collected and frozen at −80∘C for cytokine or chemokine
assessment. Cytokine amounts were assessed by ELISA for
TNFR1, TNFR2, TNF, IL-6, IL-1𝛽, MIP-1𝛼, MCP-1, and KC,
in accordance with the manufacturer’s instructions.

2.7.Nitrite Assay. Cell-free supernatantswere collected at dif-
ferent time points after BCG infection and nitrite content was
measured using Griess method as previously described [28].
The plate was incubated with Griess reagent (sulfonamide 1%
plus N-(1-naphthyl)-ethylenediamine dihydrochloride 0.1%
in phosphoric acid 2.5%) at room temperature for 5min in the
dark. Absorbance at 570 nm was measured with a microplate
reader. NO concentrations were calculated using a standard
curve.

2.8. Western Blotting. Ending the culture, cells were har-
vested, washed in PBS, and lysed in RIPA buffer containing
protease inhibitor (Complete Mini Protease Inhibitor Cock-
tail Tablet, Roche). Cellular protein extracts were separated
by SDS-PAGE and transferred to 0.2𝜇mpore-size nitrocellu-
lose membranes (Bio-Rad Laboratories, Hercules, CA, USA)
with 25mm Tris-base (pH 8.0) containing 150mm glycine
and 20% (volume/volume) methanol as previously described
[28]. Membranes were incubated with antibodies to phos-
pho-p44/42 MAPK (ERK1/2), phospho-nuclear factor
kappa-light-chain-enhancer of activated B cells (NF𝜅B p65),
phospho-apoptosis signal-regulating kinase 1 (ASK1)
(Ser967) (from Cell Signaling Technology), rabbit poly-
clonal anti-iNOS (Calbiochem Merck), and anti-caspase-1
(clone 5B10) (BioLegend). Protein bands were detected by
incubating with horseradish peroxidase-labeled antibodies
and visualized with enhanced chemiluminescence reagent
(Advantas) using an ImageQuant Las-4000mini (GEHealth-
care Life Science). Band densities were analyzed by
densitometry using the online IMAGEJ 1.39c software
(National Institutes of Health) (http://rsb.info.nih.gov/ij/
index.html) as described by Luke Miller (http://www.luke-
miller.org/journal/2007/08/quantifying-western-blots-with-
out.html). Samples were normalized using tubulin as loading
control.

2.9. Macrophage Proliferation Assay. RAWmacrophage pro-
liferation was determined using the Click-iT� EdU Flow
Cytometry assay kit (Invitrogen� Life Technology Inc.) in
accordance with the manufacturer’s instructions. Briefly,
fresh RAW macrophages were cultured in 24-well flat-
bottomed cell culture plates (1 × 106/mL) in DMEM/F-12
medium supplemented (volume/volume) with supernatants
recovered from different time points and MOI cultures of

infected macrophages. Three 𝜇M of EdU (5-ethylnyl-2󸀠-
deoxyuridine) was added to cultures and cells were left for
12 or 24 h in culture, at 37∘C in a humidified atmosphere con-
taining 5% CO

2
. Cells were harvested, fixed, permeabilized,

and stained with Alexa Fluor 488 dye for detention of DNA
synthesis. As control of proliferation, RAWmacrophages cul-
tured in DMEM/F-12 medium was used. Data were collected
using a FACs CyAn, analyzed with FlowJo software. 50,000
events were acquired per sample.

2.10. Transfection of RAW Cells and Analysis by Confocal
Microscopy. RAW macrophages were transfected with plas-
mid encoding mitochondrial targeted red fluorescein protein
(mitoRFP) at final concentration of 3 𝜇g plasmid/1×106 cells
to generate RAW-mitoRFP. We used a Neon Transfection
System under conditions, 1680 v (pulse voltage), 20ms (pulse
width), and 1 (pulse number), andmaintained in DMEM cul-
ture medium plus G418 antibiotic (500 𝜇g/mL) (Mediatech,
Inc., Manassas, VA). Transfected macrophages were sorted
based on the expression of mitoRFP using a FACs-Aria II;
we obtained 97% of RAW cells which were RAW-mitoRFP+.
Sorted RAW-mitoRFP+ cells were then infected with BCG-
GFP at MOI 0.1 and MOI 1. Cultures were done on Chamber
Slide System (Thermo Scientific, Inc., Waltham, MA) and
maintained 2, 5, or 18 h at 37∘ in a humidified atmosphere
containing 5% CO

2
. Cells were washed with PBS and fixed

in 4% formaldehyde during 15 minutes and mounted with
mounting medium containing DAPI (Vector Laboratories,
Inc., Burlingame, CA). The slides were examined by SP5
confocal microscopy, and the Leica Application Suite (LAS)
software was used for analysis (Leica Microsystems, Co).

2.11. Statistical Analysis. Results are expressed as means ±
SEM. Data comparisons were performed using one-way
ANOVA followed by a Dunnett’s post hoc test for multiple
comparisons. Two-tailed unpaired Student’s 𝑡-testwas used to
evaluate differences between 2 independent groups (Graph-
Pad Software, Inc., San Diego, CA). A 𝑃 value <0.05 was
considered to be statistically significant.

3. Results

3.1. BCG Infection at MOI 1 but Not MOI 0.1 Induced Cell
Death. We have first assessed early and late apoptosis and
necrosis in RAW macrophages induced by BCG Pasteur
infection using MOI 1 (1 bacillus/cell) versus MOI 0.1 (1
bacillus/10 cells) by flow cytometry. Studies comparing BCG
with M. tuberculosis have frequently used high MOI. In
general, studies have used BCG infection at MOI 10 (10
bacilli/cell) showing that apoptosis is a cell strategy to
eliminate mycobacteria [20, 21].

Cells were analyzed in a dot plot color where Annexin-
V+ cells indicated early apoptotic cells, Annexin-V+7-AAD+
late apoptotic cells, 7-AAD+ necrotic cells, and negative cells
for both markers were living cells as using a general gate
(Figures 1(a) and 1(b)). At MOI 1, we observed an increase
of early apoptosis at 5 h after infection whereas late apoptosis
increased at 5 h and 18 h, contrasting with MOI 0.1 infected

https://imagej.nih.gov/ij/index.html
https://imagej.nih.gov/ij/index.html
http://www.lukemiller.org/journal/2007/08/quantifying-western-blots-without.html
http://www.lukemiller.org/journal/2007/08/quantifying-western-blots-without.html
http://www.lukemiller.org/journal/2007/08/quantifying-western-blots-without.html
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Figure 1: Continued.
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Figure 1: BCG infection atMOI 1 but notMOI 0.1 induces cell death. (a) Uninfected RAWmacrophages were cultured or, (b) and (c), infected
with BCGPasteur atMOI 1 andMOI 0.1 during 2, 5, and 18 hours and stainedwithAnnexin-V and 7-AAD to assess the percentage of cell death
by flow cytometry as shown in the representative plots. (b) Representative FCS and SSC scatter plots of cells infected for 5 h with MOI 1 and
(c) Annexin-V versus 7-AAD at 5 and 18 h. Percentage of early (d) and late (e) apoptosis induced by BCG at 5 and 18 h. Two-tailed unpaired
Student’s 𝑡-test was used to compare percentage of infected cells MOI 1 versus MOI 0.1. Bars indicate mean ± SEM from four independent
experiments. ∗∗𝑃 < 0.01; ∗𝑃 < 0.05. Light grey refers to uninfected cells.

cells which did not exhibit apoptosis after infection compared
to uninfected cells (Figures 1(c), 1(d), and 1(e)).

3.2. BCG Infection at MOI 1 and MOI 0.1 Activated the
Expression of tmTNF, sTNF, and sTNF Receptors. TNF is a
major proinflammatory cytokine induced by BCG infection
and can be observed intracellularly (iTNF), on the cell surface
as transmembrane (tmTNF) and in a soluble TNF form
(sTNF) [22, 29–32]. In vivo, BCG infection has shown that
tmTNF may interact with soluble TNF receptors (sTNFR1
or sTNFR2) which may play a critical role in the infection
outcome [32].

To determine if low doses of BCGwere enough to activate
TNF and sTNFRs, we measured iTNF and tmTNF by flow
cytometry and sTNF, sTNFR1, and sTNFR2 levels by ELISA.
Our data showed that both MOI 1 and MOI 0.1 activated
iTNF and responses were BCG dose dependent. The main
difference betweenMOIs was that iTNF expression wasmore
transient using MOI 0.1 compared to MOI 1 (Figure 2(a)).
However, the percentage of MOI 1 infected cells expressing
tmTNF was higher than cells infected with MOI 0.1 at 5 hrs
but similar at 18 hrs after infection (Figure 2(b)). We then
assessed sTNF and observed induction in a dose dependent
manner and the levels were maintained longer with MOI
1 than with MOI 0.1 (Figure 2(c)). Regarding sTNFRs, we
observed that sTNFR1 was similarly regulated by the two
MOIs, but in contrast sTNFR2 expression was BCG dose
dependent (Figures 2(d) and 2(e)). Collectively, our data
show that both MOI 1 and MOI 0.1 induce iTNF, sTNF, and
sTNFR2 in a dose dependent manner but expression levels of
tmTNF and sTNFR1 appear independent of MOIs.

3.3. Different Activation Patterns of Cytokines and Chemokines
Triggered by BCG Infection at MOI 1 and MOI 0.1. Secretion
of cytokines other than TNF as well as chemokines is
necessary for cellular activation and recruitment following
mycobacterial infection in vivo. We have then compared
the levels of secreted cytokines and chemokines after BCG
infection and observed that IL-6 is only activated with MOI
1 but not with MOI 0.1 (Figure 3(a)). Unexpectedly, IL-1𝛽
was produced earlier with MOI 0.1 than with MOI 1 and
peaked at 18 h after infection and decreased at 24 h after
infection. In contrast, MOI 1 induced IL-1𝛽 which reached
a maximum at 48 h but this high level was maintained
up to 72 h (Figure 3(b)). Western blot analyses showed an
increased level at 2 h after infection of procaspase-1 in cells
infected with MOI 0.1 compared with those infected with
MOI 1. However, amounts of caspase-1 p20 subunit were
not significantly different using MOI 1 and MOI 0.1 (see
Supplementary Figure 1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2016/4048235). We have
assessed the concentration of three chemokines, monocyte
chemotactic protein 1 (MCP-1), chemokine (C-X-C motif)
ligand 1 or also called keratinocyte chemoattractant (KC), and
macrophage inflammatory protein-1 alpha (MIP-1𝛼) which
have important chemoattractant activity for monocytes and
neutrophils [33]. BCG infection at MOI 0.1 induced high
levels of MCP-1 from 5 h and still increased at 18 h but at
24 h MCP-1 was found downregulated. Conversely, MOI 1
induced high level at 18 h that was maintained until 72 h after
infection (Figure 3(c)). KCwas induced at 2 h byMOI 0.1 and
in higher levels thanMOI 1 infection (Figure 3(d)). BothMOI
1 andMOI 0.1 increasedMIP-1𝛼 level up to 5 h after infection

http://dx.doi.org/10.1155/2016/4048235
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Figure 2: BCG infection at MOI 1 and MOI 0.1 activates TNF and soluble TNF receptors. (a) and (b) RAW macrophages were infected at
MOI 1 or MOI 0.1 during 2, 5, and 18 h and stained for intracellular and transmembrane TNF with mAb against TNF. (c) Concentrations of
soluble form of TNF were assessed by ELISA. (d) and (e) Soluble TNFR1 and TNFR2 were measured by ELISA in culture supernatant from
RAW macrophages infected with BCG Pasteur at MOI 1 and MOI 0.1. Two-tailed unpaired Student’s 𝑡-test was used to evaluate statistical
differences. Bars indicate mean ± SEM from four independent experiments in each case. ∗∗∗𝑃 < 0.001; ∗∗𝑃 < 0.01; ∗𝑃 < 0.05.
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Figure 3: BCG infection at MOI 1 and MOI 0.1 is efficient to induce cellular activation but kinetics are different. (a) Concentrations of
proinflammatory cytokines IL-6, (b) IL-1𝛽, and chemokines, (c) MCP-1, (d) KC, and (e) MIP-1𝛼, were measured by ELISA in culture
supernatant from infected RAW macrophages with BCG Pasteur at MOI 1 and MOI 0.1 during different time points. Bars indicate mean
± SEM from four independent experiments. ANOVA and Dunnett’s post hoc test compared to uninfected macrophages or MOI 1 versus MOI
0.1. ∗∗∗𝑃 < 0.001, ∗∗𝑃 < 0.01, and ∗𝑃 < 0.05.
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(Figure 3(e)).Our data show thatMOI 0.1 is efficient to induce
early IL-1𝛽 and caspase-1 activation and that cytokine and
chemokine kinetics induced by MOI 1 versus MOI 0.1 is
different suggesting that intracellular pathways are regulated
by infection dosages.

3.4. Differential Regulation of Phosphorylated ASK1 and NF𝜅B
by BCG Infection at MOI 1 and MOI 0.1. Following our
previous results indicating that MOI 1 and MOI 0.1 may
activate different intracellular pathways, we examined tran-
scription factors involved in cytokine expression including
nuclear factor kappa B (NF𝜅B) phosphorylation required for
cytokine transcription [34]. We assessed extracellular signal-
regulated kinase (ERK1/2) and apoptosis signal-regulating
kinase (ASK1), two members of the MAPK family involved
in inflammatory process [35, 36]. Levels of phosphorylated
NF𝜅B (NF𝜅B-P), ASK1 (ASK1-P), ERK1 (ERK1-P), and ERK2
(ERK2-P) were determined by western blot analyses at differ-
ent time points after BCG infection. We observed that MOI
1 and MOI 0.1 similarly induced phosphorylation of NF𝜅B-
P and ASK1-P and signaling was sustained with MOI 1 but
not with MOI 0.1 (Figures 4(a) and 4(b)). However, ERK1-P
and ERK2-P pathways showed the same pattern of activation
which was independent of BCG infection doses (Figures 4(c)
and 4(d)). Together, these data show that phosphorylated
NF𝜅B and ASK correlate with soluble cytokine expression
while ERK1-P and ERK2-P are activated similarly with both
low and high BCG doses.

3.5. Microenvironment Produced by BCG Infection at MOI
1 Induces Effects on Macrophage Proliferation. Our data
showing that cellular activation is MOI- and time-dependent
could suggest that the microenvironment generated by the
infection would affect macrophage proliferation. To test
this hypothesis, we recovered the supernatant from infected
cells at different time points which was added to fresh
RAWmacrophages and cell proliferation was evaluated after
12 h and 24 h as previously described [37]. Macrophages
cultured in fresh medium were considered as control cells
for proliferation. Macrophage proliferation at 12 h was not
affected by supernatant of BCG-infected cells at MOI 1 but
was inhibited by supernatant of 18 h of BCG-infected cells
at MOI 0.1 (Figures 5(a) and 5(b)). In contrast, macrophage
proliferation at 24 hours was significantly increased with
2 and 5 h supernatant of BCG-infected cells at MOI 1,
while again supernatant of 18 h of BCG-infected cells at
MOI 0.1 inhibited the macrophage proliferation (Figures 5(c)
and 5(d)). Thus, these results show that microenvironment
generated with MOI 1 enhanced cell proliferation but not
MOI 0.1.

3.6. Low Dose BCG Infection Induced Microbicidal Effec-
tor Functions. Activation of inducible nitric oxide synthase
(iNOS) to generate oxide nitric (NO) is an important effector
mechanism to eliminate mycobacteria [38]. We compared
macrophage iNOS expression bywestern blot in cells infected
with BCG at MOI 1 and MOI 0.1. Infection at MOI 1 induced
higher levels of iNOS protein than MOI 0.1 at 18 h after
infection (Figures 6(a) and 6(b)).We alsomeasured the levels

of nitrite as an indirect manner to evaluate NO production.
We observed that although NO was similarly produced
at early infection, infection with BCG at MOI 1 yielded
sustained and higher NO levels at later time points. Infection
with BCG at MOI 0.1 triggered lower and transient NO
production (Figure 6(c)). Our data showed that both MOIs
activate NO production; however only MOI 1 maintains
longer and higher NO levels at late time points.

3.7. BCG Infection with Low Bacterial Burden Does Not Alter
Mitochondrial Distribution and Nuclear Integrity. Host cell
death mediated by infectious agents involves modulation of
mitochondria. Using M. tuberculosis infection model, it has
been reported that high dose (MOI ≥ 10) induced cell death
where mitochondria and nucleus were the first organelles
showing damage [39, 40]. We asked if BCG infection with
low dose affects mitochondrial integrity. To explore this
question, RAWmacrophages were transfected with mitoRFP
(RAW-mitoRFP), infected with BCG-GFP, and examined by
confocal microscopy to evaluate nuclear structure and local-
ization of mitochondria. Results showed that mitochondrial
distribution and nuclear integrity after BCG-GFP infection
were maintained in a similar form than in uninfected cells
(Figures 7(a) and 7(b)). We observed that the number of
RAW-mitoRFP cells decreased after the infection. To better
examine this result, RAW-mitoRFP+ cells were sorted and
enriched to 97% and then infected with BCG-GFP (Figures
8(a) and 8(b)). A reduction of 25–40% of mitoRFP+ cells was
still observed (Figure 7(c)). In addition, we observed that cell
integrity and size assessed by flow cytometry were similar in
infected and uninfected cells, but only a discretemodification
of the cell structure was observed at 18 h MOI 1 postinfection
(Figure 7(d)). In order to evaluate if the decrease of mitoRFP
expression was due to mitochondrial loss, we measured the
presence of the constitutive mitochondrial molecule TOM40
bywestern blot analyses. TOM40 expression only increased at
5 h after infection with BCG at bothMOIs indicating that loss
of mitoRFP expression was not due to loss of mitochondrial
mass during BCG infection (Figures 8(c) and 8(d)). Together,
these results show that low doses of BCG do not affect
the nuclear integrity, mitochondrial quantity, or distribution,
even if MOI 1 induces a discrete increase of cell death.

4. Discussion

The present study analyzes the effect of very low dose BCG
infection on macrophages in terms of cell viability, cell acti-
vation, and mitochondrial integrity. Our results demonstrate
that although BCG infection at MOI 1 triggers some cell
death, there was a clear activation of the viable macrophage.
In contrast, BCG infection at MOI 0.1 was sufficient for
promoting macrophage activation with a distinct cytokine
pattern in the absence of cell death and mitochondrial
damage.

Monocytes andmacrophages are among the most impor-
tant cells of the innate immunity involved in host protection
against mycobacterial infections. Recent studies have shown
that BCG infection induces epigenetic reprogramming in
monocytes and macrophages that defines the molecular
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Figure 5: Microenvironment produced by BCG infection at MOI 1 affects macrophage proliferation. (a) and (b) Representative histograms
measuringmean fluorescence intensity (MFI) of Alexa Fluor 488 after 12 h and 24 h. (c) and (d) Supernatant from infected cells was recovered
at different time points after infection and added to fresh RAWmacrophages and proliferationwas evaluated at 12 h and 24 h in the presence of
EdU. RAWmacrophages were stained with Alexa Fluor 488 and proliferation was evaluated by flow cytometry. Two-tailed unpaired Student’s
𝑡-test was used to evaluate differences versus macrophages proliferation in new medium. Bars indicate mean ± SEM from three independent
experiments. ∗∗𝑃 < 0.01; ∗𝑃 < 0.05. The light grey bar refers to uninfected cells or 0 h.

mechanisms involved in trained immunity conferring a
nonspecific protection against a secondary infection [41].
BCG-induced epigenetic modifications in innate cells, such
as NOD receptor activation and histone methylation, pro-
vide long term functional state of circulating monocytes
which may explain the nonspecific beneficial effects already
described many years ago for children vaccinated with BCG
[42]. In this context, the present work illustrates several of the
BCG-induced functional changes on macrophages showing
the importance of the selected dosage of BCG which could
be relevant in this process.

Studies on human alveolar macrophages have shown
that infection with nonpathogenic or pathogenic strains
of M. tuberculosis (MOI: 5–10), as well as with M. bovis
BCG, induced apoptosis playing an important role in host-
pathogen interaction and contributing to host defense mech-
anisms against mycobacterial infection [43, 44]. Mycobacte-
ria-induced apoptosis was shown to affect both the infected
and uninfected macrophages and be mediated by cell contact
and independent of TNF, TGF-𝛽, and TLRs [45]. Apoptosis
of macrophages during mycobacterial infection has been
attributed to different factors including mycobacterial vir-
ulence, bacillary load, time points of observation, and the
amount of activated cytokines.

Our work shows that the amount of BCG correlates with
macrophage apoptosis. Using a BCG-GFP strain, cell death
was observed on infected and uninfected macrophages (data
not shown) as reported under infection with M. tuberculosis
[45]. The balance of apoptosis/necrosis is an important
mechanism to control intracellular mycobacterial growth
and cell activation [46] Nonpathogenic strains such as BCG

were reported to induce apoptosis whereas pathogens strain
such as H37Rv promoted necrosis in cultured macrophages
[44, 47, 48]. However, it has been reported that the bal-
ance of apoptosis and necrosis in M. tuberculosis infected
macrophages depends on bacterial virulence and bacterial
load [19].

Macrophage activation involves the induction of
cytokines, chemokines, and bactericidal mechanisms. TNF
is one of the main cytokines activated during BCG infection
in macrophages which has been associated with apoptosis
induced by M. tuberculosis infection [43]. Mechanisms of
evasion developed by virulentM. tuberculosis versus avirulent
strains involve both TNF production and TNF inactivation
by released soluble TNFR2 from activated macrophages
[23, 49]. However, human monocytes and macrophages
treated with clinically used TNF inhibitors showed that M.
tuberculosis-induced cell death was independent of TNF and
not modulated by TNF inhibition [50]. In mice, macrophage
apoptosis has been related to TNF production in the lung
of BCG-infected mice using low dose of attenuated versus
virulent M. bovis which induced higher TNF and higher
macrophage apoptosis at early time points but was reversed
at late time points of infection indicating a dynamic response
in vivo [47]. Our data on macrophages show that early
apoptosis was independent of intracellular and soluble TNF
but correlated with transmembrane TNF expression. Results
also show that whereas soluble TNFR1 was independent
of BCG dose, soluble TNFR2 was released in a BCG dose
dependent manner.

In the attempt to evaluate the main differences in
activation between MOI 1 and MOI 0.1, proinflammatory
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Figure 7: BCG infection at MOI 0.1 and MOI 1 maintains undisturbed mitochondrial and nuclear integrity. (a) Transfected RAW-mitoRFP
macrophages and (b) transfected and sorted (enriched to 97% or RAW-mitoRFP+) were infected atMOI 1 andMOI 0.1 BCG-GFP. Slides were
prepared with DAPI and mounting medium and analyzed by confocal SP5 microscopy using Leica Application Suite software. Mitochondria
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cytometry analyses of cell integrity and size using side scatter (SSC)/forward scatter (FSC). Representative image from three independent
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cytokines, molecules other than TNF, have been analyzed.
Our data showed that IL-6 was highly produced by BCG
infection at MOI 1 while no expression was observed with
infection at MOI 0.1. Our data revealed that IL-1𝛽 and
caspase-1 were also differentially modulated by different

infectious dosages. BCG infection at MOI 0.1 was more effi-
cient to induce the early production of IL-1𝛽, while infection
at MOI 1 induced a delay but high level of IL-1𝛽. In this con-
text, the microenvironment generated by BCG infection at
the two MOIs affected differently macrophage proliferation.



14 Journal of Immunology Research

Before sorting RAW-RFP
MOI 1 MOI 0.1

Nucleus
Mitochondria

BCG-GFP

BC
G
(5

h)
BC

G
(1
8

h)
(a)

After sorting RAW-RFP
MOI 1 MOI 0.1

Nucleus
Mitochondria

BCG-GFP

BC
G
(5

h)
BC

G
(1
8

h)

(b)

5 18
BCG (hour)

2

MOI 1
Uninfected

MOI 0.1

2.0

1.5

1.0

0.5

0.0

TO
M
4
0

(r
el

at
iv

e u
ni

ts)

∗ ∗

(c)

TOM40

Tubulin

MOI Uninfected Uninfected Uninfected1 0.1 1 0.1 1 0.1

2h 5h 18h

(d)

Figure 8: Amount of TOM40 is maintained at both MOI 1 and MOI 0.1. (a) RAW-mitoRFP macrophages were infected with BCG-GFP at
MOI 1 andMOI 0.1 for 5 and 18 h or (b) sorted for mitoRFP and then infected. (c) Western blots for TOM40, band densities were normalized
against tubulin. (d) Representativewestern blot from three independent experiments. Two-tailed unpaired Student’s 𝑡-test was used to evaluate
statistical differences. Bars indicate mean ± SEM from three experiments. ∗𝑃 < 0.05.



Journal of Immunology Research 15

Previous data reported that BCG (MOI 3 and MOI 10) failed
to stimulate release of IL-1𝛽 from human macrophages [51].
The different results could be also attributed to different
cellular origins. It has been reported that BCG infection
of human macrophages induced very low levels of IL-1𝛽;
however, human monocytes infected with M. tuberculosis or
BCG delivered comparable levels indicating that the IL-1𝛽
response is influenced by the host cell type [52]. Similar to
IL-1𝛽, we observed that MOI 0.1 was a better stimulus to
induceMCP-1 andKC expression at early time after infection.
However, at late time points BCG infection at MOI 1 induced
higher protein amounts than infection atMOI 0.1. From these
data we conclude that MOI 0.1 is a good early inducer of
two important chemokinesMCP-1 andKCwhich are relevant
in maintaining the integrity of granuloma in asymptomatic
individuals and also mediate host defense via activation
of transcription factors, MAPK and adhesion molecules
[53, 54]. We have then analyzed transcription factors and
found that NF𝜅B and ASK1 were similarly activated at early
time by both BCG MOIs and at 18 h, and using MOI 0.1,
cytokines production and NF𝜅B were downregulated. No
differenceswere found in ERK1/2 phosphorylation patterns at
the two infection dosages. In addition, both MOIs were able
to activate bactericidal mechanisms required for bacterial
elimination and as expected, MOI 1 induced higher iNOS
protein and NO production.

Previous report has shown thatmycobacterial infection in
macrophages caused mitochondrial perturbation. Compari-
son of the effects of virulent versus avirulent M. tuberculosis
strains showed that virulent strain increased mitochondrial
activity whereas avirulent strains resulted in mitochondria
exhaustion suggesting that virulent strains could maintain a
niche for sustained survival [40]. Our data show that both
BCG infections transiently increased the amount of themito-
chondrial protein TOM40 suggesting a transient increase in
mitochondrialmass.This could be a consequence of the stress
induced by the infection; however more experiments will be
necessary to test this hypothesis.

In this study, we also used parameters such as cellular
granularity and size and chromatin condensation that classi-
cally has been described as indicators of cellular integrity [55,
56]. Even if macrophages under condition MOI 1 showed a
discrete loss of SSC compared to uninfectedmacrophages, the
condensed chromatin and mitochondria were not affected.
We concluded that low BCG doses are enough to activate
macrophages and to maintain cellular viability and mito-
chondrial integrity.

Although our study has limitations due to the fact that
it has been developed in a cell line, it can be considered
that data provide new insights into macrophage activation by
BCG infection with very low number of bacilli that can be
used as an in vitro infection system and applied to studies on
macrophage early activationmechanismmaintaining cell via-
bility. More extensive studies are needed to confirm that very
lowBCGdosemay induce changes in innate cells and provide
beneficial effects. In support to our data, the use of one-half
or one-third of BCG for standard instillation has recently
been proposed. A study in NMIBC-patients treated with
low dose BCG had lower toxicity and higher quality of life

comparedwithNMIBC-patients instilled with standard-dose
[57, 58].Thus, low dose BCG can be applied to different BCG
research fields of interest including mycobacterial infections,
cancer immunotherapy, and prevention of autoimmunity and
allergies [59].
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I. Garcia wrote the manuscript. D. Martinvalet gave critical
reviews of the manuscript.

Acknowledgments

This work was supported by FNS Grant 310033-166662 to I.
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